New paper on first principles

I just tried to post my new paper of “First Principles of Consistent Physics” on arXiv.org. Unfortunately it was put on hold immediately and I then submitted it to the OSF eprint server. This is quite an exciting paper to me. It proposes new foundations and guiding principles on fundamental physics and cosmology based and improved upon my early blog “first principles of physics“. It should shed new light on further developments of the new mirror framework.

Continue reading “New paper on first principles”

First principles of physics

The approach of first principles has been pursued in the development and history of physics. Ever since the establishment of the Standard Model of particle physics in 1970s, the idea of going after theory of everything has become popular as the latest approach of first principles among theoretical physicists for unifying all particles and interactions. However, we seem to live in a dynamic world as indicated, e.g., since the discovery of an expanding Universe and it is definitely at odds with the static picture of an ultimate unified theory for physics.

The dynamic picture tells us that the time reversal symmetry has to be broken and it has to be the first (broken) symmetry. Whatever first principles we propose have to be able to naturally break this symmetry first in the very beginning. And there is no reason why the current 4-dimensional spacetime, in particular, its dimensions can’t be dynamic. It is probably more natural to consider that spacetime has evolved in a dimension-by-dimension way.

First of all, we propose and summarize the three first principles as follows:

  1. A measurable finite physical world is assumed.
  2. The quantum version of the variation principle in terms of Feynman’s path integral formalism is applied.
  3. Spacetime emerges via dimensional phase transitions (i.e., first time dimension and then space dimensions got inflated).
Continue reading “First principles of physics”

How should private foundations support science?

It is amazing that there exist quite some private foundations in the United States who care about science and are enthusiastic about funding scientific projects. However, a lot of them, if not all, don’t seem to know how they should support science in a complementary way when compared to government funding agencies like NSF and DoE.

Continue reading “How should private foundations support science?”

Time to reform peer-review

One of the critical features in scientific research is the application of the so-called peer-review process before a scientific paper is officially published in a journal. Ideally, peer-review, at least seemingly in its original purpose, should serve as a measure of quality control that benefits both the authors and the readers. However, nowadays, it becomes more and more like an obstruction to the advancement of science, in particular, in terms of radically new ideas and directions.

Continue reading “Time to reform peer-review”

Old Wine in New Bottles – How does science advance?

A lot of times science advances by incorporating or interpreting old ideas under new scenarios.

For example, Lorentz first proposed the so-called Lorentz transformation, but it was Einstein who correctly interpreted and applied it in his theory of special relativity. Yang and Mills first came up with the SU(2) gauge theory idea for studying nuclear isospin. But it was Glashow, Weinberg, Salam , and ‘t Hooft who found the best application of the idea to the electroweak interaction eventually leading to the most celebrated unification theory (called the Standard Model) for all three gauge interactions of the known elementary particles.

Continue reading “Old Wine in New Bottles – How does science advance?”

Does the Universe Have a Mirror Sector?

[This is a repost of the popular introduction page on the new mirror matter theory]

Modern physics is pillared by Einstein’s theory of general relativity (that defines spacetime and the gravitational force) and the Standard Model as the best known quantum theory (that governs quantum particles and the other known interactions). Despite tremendous successes of the two theories and decades of more scientific efforts, there remains a wide range of puzzling phenomena in fundamental physics and the dream of unification of general relativity and quantum theory has never come true.

Continue reading “Does the Universe Have a Mirror Sector?”

Invisible decays and equivalence of CP violation and mirror symmetry breaking scales

COVID-19 pandemic has hindered my scientific production quite a bit. But finally my new paper on “invisible decays of neutral hadrons” is finished though it should have been done months ago. It provides precise predictions on invisible decay branching fractions of long-lived neutral hadrons that can be readily measured at existing collider facilities. The idea is that CP violation can be considered as a direct result of spontaneous mirror symmetry breaking at staged quark condensation (e.g., at temperatures of 100GeV – 100 MeV in the early Universe). For a neutral kaon system, it means that the CP and mirror breaking scales, i.e., the mixing strength and mass splitting parameters should be the same.

Continue reading “Invisible decays and equivalence of CP violation and mirror symmetry breaking scales”

My new paper on black holes

I am a little bit late to celebrate Einstein’s birthday. But here is my new paper that extends Einstein’s 4-d General Relativity to a 2-d spacetime model with new understanding and studies the black hole as a genuine 2-d object. Unfortunately,  arXiv did not help again this time and put my submission on hold one more time. Most likely, they are going to reject it again like my last paper in a few weeks.

The new model predicts a neutron/quark star mass limit of less than 2.5 solar mass that is compatible with observation. For more massive stars, the ever softer equation of state in 4-d spacetime will eventually cause a core collapse to a temperature above 1016 GeV. The 4-d spacetime then undergoes phase transition to 2-d spacetime with much reduced degrees of freedom to re-stabilize the star as a true 2-d black hole.

Continue reading “My new paper on black holes”

How risky or controversial is my work on mirror matter theory?

To demonstrate the risky or controversial aspects of my work on mirror matter theory, I’d like to share more comments extracted from various review reports from the expert physicists when refereeing my work. See here for early comments on my work. Clearly, the controversies are getting escalated on my new work on a dynamical view of the Universe as even relatively open-mined arXiv decided to deny my submission (see here). The list of the following review comments is sort of in the order from positive to negative.

  • Example 1:

This subject is a hot topic, and the results are very interesting in light of future experimental measurements for the light quark sector.

Continue reading “How risky or controversial is my work on mirror matter theory?”